On non-existence of static vacuum black holes with degenerate components of the event horizon

نویسنده

  • Piotr T. Chruściel
چکیده

We present a simple proof of the non-existence of degenerate components of the event horizon in static, vacuum, regular, four-dimensional black hole spacetimes. We discuss the generalization to higher dimensions and the inclusion of a cosmological constant. The classical proof of uniqueness of static vacuum black holes [3] assumes that all components of the event horizon are non-degenerate. The argument has been extended1 to include degenerate components [5] by studying the orbit-space geometry near the event horizon, and applying an appropriate Partially supported by a Polish Research Committee grant 2 P03B 073 24. E-mail [email protected], URL www.phys.univ-tours.fr/∼piotr † E–mail: [email protected] ‡ E–mail: [email protected] A static configuration with all components degenerate is easy to exclude using Komar integrals and the positive energy theorem, see [5, Section 4] for precise statements. However, one also wants to exclude solutions with both degenerate and non-degenerate components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The classification of static vacuum space–times containing an asymptotically flat spacelike hypersurface with compact interior

We prove non–existence of static, vacuum, appropriately regular, asymptotically flat black hole space–times with degenerate (not necessarily connected) components of the event horizon. This finishes the classification of static, vacuum, asymptotically flat domains of outer communication in an appropriate class of space–times, showing that the domains of outer communication of the Schwarzschild ...

متن کامل

The classification of static electro–vacuum space–times containing an asymptotically flat spacelike hypersurface with compact interior

We show that static electro–vacuum black hole space–times containing an asymptotically flat spacelike hypersurface with compact interior and with both degenerate and non–degenerate components of the event horizon do not exist. This is done by a careful study of the near-horizon geometry of degenerate horizons, which allows us to eliminate the last restriction of the static electro-vacuum no-hai...

متن کامل

The phase transition of corrected black hole with f(R) gravity

In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...

متن کامل

Towards a classification of static electrovacuum spacetimes containing an asymptotically flat spacelike hypersurface with compact interior

We show that static electrovacuum black hole spacetimes containing an asymptotically flat spacelike hypersurface with compact interior and with both degenerate and non-degenerate components of the event horizon do not exist, under the supplementary hypothesis that all degenerate components of the event horizon have charges of the same sign. This extends previous uniqueness theorems of Simon and...

متن کامل

Thermal divergences on the event horizons of two-dimensional black holes.

The expectation value of the stress-energy tensor 〈Tμν〉 of a free conformally invariant scalar field is computed in a general static two-dimensional black hole spacetime when the field is in either a zero temperature vacuum state or a thermal state at a nonzero temperature. It is found that for every static two-dimensional black hole the stress-energy diverges strongly on the event horizon unle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005